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Abstract

Existing classifier evaluation methods do not fully capture the intended use of
classifiers in hybrid intrusion detection systems (IDS), systems that employ machine
learning alongside a signature-based IDS. This research challenges traditional classifier
evaluation methods in favor of a value-focused evaluation method that incorporates
evaluator-specific weights for classifier and prediction threshold selection. By allowing
the evaluator to weight known and unknown threat detection by alert classification,
classifier selection is optimized to evaluator values for this application. The proposed
evaluation methods are applied to a Cyber Defense Exercise (CDX) dataset. Network
data is processed to produce connection-level features, then labeled by correlating
packet-level alerts from a signature-based IDS. Seven machine learning algorithms
are evaluated using traditional methods and the value-focused method. Comparing
results from the two evaluation methods, fallacies are revealed with 2 of the 5 notional
weighting schemes that would lead to suboptimal classifier and prediction threshold

selection when using traditional methods that do not consider evaluator values.
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EVALUATING MACHINE LEARNING CLASSIFIERS FOR HYBRID
NETWORK INTRUSION DETECTION SYSTEMS

I. Introduction

Intrusion detection is often the primary triggering mechanism for network security
analysts to respond to malicious activities on a computer network. The volume
and velocity of communications on today’s networks require the use of automated
Intrusion Detection Systems (IDS) as human analysts cannot review all transmitted
information manually. IDS alerts are typically the starting point for an analyst’s
review of an intrusion. After the initial alert, an analyst performs investigations into
raw network data, system log sources, and other sources to confirm or deny the alert.
An IDS often produces false alarms and misses threats. False alarms cause undue
workload on analysts and missed threats leave the organization in a state of false
security as intruders unknowingly infiltrate their networks.

The current cyber environment is littered with intrusions and data breaches. The
2013 Data Breach Investigations Report by Verizon analyzed 47,000 security incidents
and 621 confirmed data breaches and indicated that 66% of the 621 data breaches
“took months or more to discover” [45]. This high percentage of data breaches with
delayed detection times reveals one of many problems with the operationalization
of IDSes. Other challenges in the intrusion detection problem include false alarms,
missed attacks, and the detection of unknown attacks.

Misuse detection, the use of signatures for known threats, is the primary method
used in today’s IDSes. As vulnerabilities are discovered, signatures are created and

used for detection. This method is reactive and is not capable of detecting unknown



threats, those threats which the detection system lacks a corresponding detection
signature. Research on anomaly-based intrusion detection systems has been ongo-
ing since the 1980’s but has failed to establish its place in the operational environ-
ment that is dominated by signature-based systems. This is primarily attributed to
high false positive rates from these anomaly-based systems. Being that signature-
based systems cannot detect unknown threats, it is necessary that user confidence
for anomaly-based systems improves and operational use of these systems increases.
Hybrid solutions, those that incorporate both a misuse and anomaly detector, have
been shown to provide many benefits such as reducing false positives and negatives,
supporting verification of true and false positives, and detecting unknown threats.
Deploying an anomaly-based IDS in a hybrid configuration alongside an existing
signature-based IDS is the next logical advancement in IDS technologies, allowing an
organization to enhance an existing signature-based network sensor with the capabil-
ity of detecting unknown threats. This is a classification problem that is commonly
addressed using machine learning classifiers. Much research has been done over the
past 15 years with machine learning in the intrusion detection domain. Yet, there
is no clear method of selecting an optimal classifier, or set of classifiers, for use in
a hybrid IDS architecture. While the “no free lunch” theorem [47] explains the im-
plications of optimization, this research aims to fill the gap of selecting an optimal
classifier in terms of evaluator-specified values by providing a methodology for eval-
uating classifiers for specific use in hybrid IDS systems. The intent is to provide an
evaluation method that will improve user confidence in the use of machine learning

classifiers alongside existing signature-based IDSes.



1.1 Research Goals and Hypothesis

The overall goal of this research is to develop a methodology of evaluating a
threat classifier system to use in a hybrid IDS architecture. Emphasis is placed on
detecting unknown threats while minimizing false positives and negatives as these
are common goals among all organizations. Threat classification is accomplished at
the connection-level with experiments at multiple layers of the Transmission Control
Protocol (TCP)/Internet Protocol (IP) stack to determine the appropriate layer to
generalize network traffic. The proposed methodology should allow an organization
to develop and test multiple machine learning classifiers in a sensor-specific manner,
tailoring the selection to the organization’s own data and network services. The ability
to tailor classifier selection based on other organization-specific goals, resources, and
security requirements should also be included. As these goals and requirements change
over time, the evaluator should be able to quickly reevaluate classifiers. An evaluator
should be able to weight parameters for detecting known and unknown threats, false

positives, and detection rates by type of attack. Specific research goals are:

1. Provide a machine learning classifier evaluation methodology which incorporates
a weighted scheme allowing evaluator-specific requirements to be considered in

the evaluation process.

2. Demonstrate an engineering advantage by applying the methodology to evalu-
ate multiple classifiers used in intrusion detection experiments using notional

weighting schemes.

3. Conduct experiments at various layers in the TCP/IP stack to determine if the
layer in which network traffic is generalized has any statistical significance in

results.



The hypothesis is that there will be an engineering advantage to incorporating an
evaluator-specific weighting scheme into the classifier evaluation process. While not
measured, user confidence for selected machine learning classifiers should increase by

selecting classifiers developed that align with user values.

1.2 Research Contributions

This research contributes to the field of intrusion detection, with an emphasis
in the application of machine learning. This research presents a comprehensive ap-
proach, similar to cross-validation, to evaluate a classifier’s ability to detect unknown
threats by allowing every malicious connection in the dataset the opportunity to be
tested as an unknown threat. This research also applies the Value-Focused Thinking
(VFT) decision-making approach, from the field of operations research, to evaluate
classifiers using a value hierarchy model constructed towards using the classifiers in a
hybrid IDS architecture. Lastly, this research presents a unique approach to parsing
a traditional Precision-Recall (PR) curve into multiple curves representing different
attack classifications allowing the classification performance for each classifier to be

compared by attack class across the entire range of prediction thresholds.

1.3 Preview

This chapter introduced problems within the intrusion detection domain, focus-
ing on the operationalization of machine learning in hybrid IDS architectures. The
research goals, hypotheses, and contributions were also presented. Chapter II covers
related work to include a background of IDS technologies and the application of ma-
chine learning to intrusion detection. Chapter III explains the methodologies used for
the experiments in this research. Experiment results are in Chapter IV. Conclusions

are provided in Chapter V along with recommendations for future research.



II. Related Research

2.1 Chapter Overview

This chapter provides a background of IDS technologies and how machine learning
is being applied to the problem. The first section covers a brief history of IDSes and
two popular open-source IDS applications. The following section examines intrusion
detection methodologies, thoroughly explaining the difference between misuse and
anomaly detection and how they can be applied in a hybrid configuration. Next, a
literature review of recent research on the application of machine learning to net-
work traffic and threat detection classification is presented. Finally, a brief technical

background of the machine learning classifiers used in this thesis is provided.

2.2 Intrusion Detection Systems

An intrusion is “the act of wrongfully entering upon, seizing, or taking possession
of the property of another” [4]. Adapting this definition to the cyber domain, an
intrusion can be considered any attempt to compromise a system’s confidentiality,
integrity, or availability. The early works of detecting intrusions in the cyber domain
can be traced back to the 1980’s with the seminal research conducted by Ander-
son [11] and Denning [15]. The detection methodology shifted from primarily manual
inspection of audit logs to automated systems that analyze large amounts of data in
real-time.

The National Institute of Standards and Technology (NIST) categorizes IDSes
by the method used to collect and analyze audit data [40]. A Network-Based Intru-
sion Detection System (NIDS) analyzes network traffic for suspicious behavior. A
Host-Based Intrusion Detection System (HIDS) monitors activity on a specific host.

A wireless IDS analyzes wireless network traffic for suspicious behavior. Finally, a



network behavior analysis system analyzes statistical features of network traffic to
identify suspicious behavior.

Many challenges exist in intrusion detection. Intrusion detection is ultimately a
classification problem. Audit data is collected, analyzed, and classified as malicious
or normal. As with any other classification problem, false positives and negatives are
a challenge. Other challenges specific to network intrusion detection are constantly
evolving environments, detection of novel attacks, and encryption. Research in the
IDS domain is limited by lack of ground truth data and standardized datasets to
evaluate IDS technologies.

This research is restricted to network-based IDS. The following sections provide
in depth detail of two popular open-source NIDS, Snort and Bro, both of which are

used in the research experiments of this thesis.

2.2.1 Snort.

Originally released in 1999, Snort built upon tcpdump, a packet sniffing tool,
adding the ability for packet payload inspection using easy to write rules [38]. Snort
has since become the leading open source signature-based IDS. The architecture show-
ing the data flow through Snort is shown in Figure 2.1. Each process within the

architecture is now briefly described:

e Libpcap Library: An open source, UNIX-based, library that provides an appli-
cation programming interface (API) to capture network packet data. Designed
to be used with C or C++, but wrappers are available to access the API with
languages like Perl, Python, Java, C#, or Ruby [20]. Winpcap is the Windows

equivalent.

e Packet Decoder: Receives the Ethernet frame from libpcap and analyzes packet

headers for IP and transport layers. Decoder rules can be configured to per-



Ruleset

Y

Libpcap R Packet | Preprocessor | Detection | Output
Library Decoder Plug-Ins Engine Plug-Ins

Figure 2.1. Snort Architecture and Data Flow

form actions at this step if desired, such as dropping a packet prior to it being

forwarded to the preprocessor.

Preprocessor Plug-Ins: Modular plug-ins that run after each packet is decoded,
but prior to the detection engine [6]. Plug-ins are used for most application-level
services (e.g., Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Pro-
tocol (SMTP), File Transfer Protocol (FTP), Post Office Protocol v3 (POP3))
in order to process application-layer header information prior to the detection
engine. This allows rules to be written using protocol-specific fields. Other plug-
ins are used for specific functionality, such as inspecting fragmented packets and

detection of port scan activities.

Detection Engine: The process used to compare each packet with the rules
stored in the ruleset. A simplified view of this process is that every packet is
compared to every rule in the ruleset. In fact, there is a complex data structure
consisting of chains of rules and options that are used to compare rules to packet
contents. Many improvements to this process have been researched to increase
the speed of detections and minimize packet drops on high bandwidth interfaces.

Specific details of this process is beyond the scope of this thesis.

Ruleset: Repository of rules used to perform packet inspection. Emerging-
Threats (ET) [3], an open source ruleset library maintained by the Snort com-

munity, and the Talos (formerly the Vulnerability Research Team (VRT)) [7]

7



ruleset libraries are the two leading rulesets in use. Both libraries offer paid
subscription and free versions of their rulesets, the difference being less delay
in receiving newly developed rules for paid users. Users also have the ability to
create site specific rules in addition to these public rulesets. Rules are stored in

flat-text files.

o Qutput Plug-Ins: Modular plug-ins that enable alerts to be output in various
formats. Alerts can be output as a simple text file or formatted for an Structure
Query Language (SQL) database, syslog, or other desired format. The mod-
ularity of the output plug-ins allows for customization to any user’s network

security monitoring architecture.

Snort operates by inspecting individual packets using rules that match patterns
of bytes. An example Snort rule is provided in Figure 2.2. This rule sends an alert
when a TCP packet is detected from $EXTERNAL NET any port, to $HTTP_SERVERS
$HTTP_PORTS meeting the conditions specified within the parenthesis. $EXTERNAL _NET,
$HTTP_SERVERS, and $HTTP_PORTS are dynamic variables that are set in the Snort
configuration file. The alert message “ET WEB_SERVER cmd.exe In URI - Possible
Command Execution Attempt” is sent when a TCP connection is established and
the content of “/cmd.exe” is detected in the http_uri field of the HT'TP header. The
reference document is noted along with the class type, signature identification number,
and signature revision number. This signature ultimately alerts when “/cmd.exe” is

found in a specific type of packet under specific conditions that have been deemed to

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"ET \
WEB_SERVER cmd.exe In URI - Possible Command Execution Attempt"; \
flow:to_server,established; content:"/cmd.exe"; fast_pattern:only; \
nocase; http_uri; reference:url,doc.emergingthreats.net/2009361; \
classtype:attempted-recon; sid:2009361; rev:6;)

Figure 2.2. Example Snort Rule



represent a command execution attempt. This is a rather simple rule using a small
set of the options available in Snort. A full description of options with more rule
examples can be found in the Snort Users Manual [6].

Alert classification types are commonly used for management of rules and to aid
in alert analysis. By default, the priority of each rule is set to the corresponding
alert classification. Priorities can be modified per rule if desired. Example alert
classifications are network scans, attempted denial-of-service, and shellcode detection.
The complete list of default alert classifications and priorities are listed in Appendix A.

The use of alert classifications will be leveraged in the experiments of this thesis.

2.2.2 Bro.

Bro is an open-source network security monitor originally developed by Paxson [34]
and currently maintained as a joint team of researchers and developers at the Inter-
national Computer Science Institute in Berkeley, CA and the National Center for
Supercomputing Applications in Urbana-Champaign, IL [1]. Bro incorporates a sep-
aration of mechanism and policy that does not inherit a “good” vs “bad” ideology
like a typical IDS, but instead leaves the user to define a local policy designed around
network-based events. Instead of loading rules that detect malicious activity, all net-
work data is monitored and logged, then scripts are used to take action when specific
criteria are met.

Bro also differs from a typical IDS in that it is connection-based rather than
packet-based, meaning that events are related to connections where a typical IDS
such as Snort relates alerts to packets. A connection can contain one or many pack-
ets. Bro’s definition of a connection includes TCP connections as well as User Data-
gram Protocol (UDP) and Internet Control Message Protocol (ICMP) flows. TCP

connections in Bro are created when the first packet of an unknown connection, a



connection not actively being monitored, is seen and closed when the TCP connec-
tion is terminated or a configured timeout interval has been reached. UDP and ICMP
connections are created when the first packet of an unknown connection is seen and
closed when a configured timeout interval has been reached. UDP and ICMP packets
are related to actively monitored connections if they contain matching source and
destination IP addresses and ports and arrive before the timeout interval has elapsed.
Every connection receives a unique identifier.

The architecture of Bro is presented in Figure 2.3. Like Snort, network data
is first filtered using libpcap. The filtered network data is processed by the Event
Engine which abstracts events from the network data. Example events are connec-
tion_established, http_request, http_reply, and connection_finished. Protocol analyz-
ers are included for all common networking protocols which define each event and
the information contained within each event. The event stream is then processed by
the Policy Script Interpreter which contains a set of scripts that take action based
on the events received. Actions could include logging information, generating alerts,

Real-time notification

| Policy script
1 Record to disk

i

Policy Script Interpreter

3 Event control Event stream

¥

Event Engine

3 Tcpdump filter Filtered packet stream

v

libpcap

Packet stream

Figure 2.3. Structure of Bro System [34]
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or executing additional scripts or programs. Default policy scripts are included with

Bro to provide an initial logging and malicious detection capabilities. The default

logs produced by Bro are the conn.log, http.log, dns.log, dhcp.log, ftp.log, smtp.log,

and others. Each log contains specific features related to connections of a specific

type.

Users are also able to develop their own local policy scripts using the Bro

programming language to produce logs and alerts as desired.

The conn.log is largest of the default logs as it contains the details on every con-

Table 2.1. Bro conn.log Fields [2]

Feature Data Type Description

ts time Time of first packet

uid string A unique identifier of the connection

id.orig_h addr Originator’s IP address

id.orig_p port Originator’s port number

id.resp_h addr Responder’s IP address

id.resp_p port Responder’s port number

proto transport_proto | Transport layer protocol of the connection (TCP,
UDP, ICMP)

service string Application protocol being sent over the connec-
tion (HTTP, FTP, DNS, etc)

duration interval Duration of the connection

orig_bytes count Number of payload bytes the originator sent

resp_bytes count Number of payload bytes the responder sent

conn_state string State of connection (see Table 2.2)

local_orig bool True if connection originated locally or false if
originated remotely

missed_bytes count Number of bytes missed in content gaps or
packet loss

history string Records state history of connections as a string
of letters (see Table 2.3)

orig_pkts count Number of packets sent by originator

orig_ip_bytes count Number of IP level bytes sent by originator
(taken from IP total length header field)

resp_pkts count Number of packets sent by responder

resp_ip_bytes | count Number of TP level bytes sent by responder
(taken from IP total length header field)

tunnel_parents | set[string] Set of uids if connection was over a tunnel

11




Table 2.2. Bro conn_state Meanings [2]

conn_state

Meaning

S0 Connection attempt seen, no reply.

S1 Connection established, not terminated.

SF Normal establishment and termination. Note that this is the same
symbol as for state S1. You can tell the two apart because for S1
there will not be any byte counts in the summary, while for SF there
will be.

REJ Connection attempt rejected.

S2 Connection established and close attempt by originator seen (but no
reply from responder).

S3 Connection established and close attempt by responder seen (but no
reply from originator).

RSTO Connection established, originator aborted (sent a RST).

RSTR Established, responder aborted.

RSTOS0 Originator sent a SYN followed by a RST, we never saw a SYN ACK
from the responder.

RSTRH Responder sent a SYN ACK followed by a RST, we never saw a SYN
from the (purported) originator.

SH Originator sent a SYN followed by a FIN, we never saw a SYN ACK
from the responder (hence the connection was half open).

SHR Responder sent a SYN ACK followed by a FIN, we never saw a SYN
from the originator.

OTH No SYN seen, just midstream traffic (a partial connection that was

not later closed).

nection seen by Bro. Features from the conn.log are used in the machine learning ex-

periments in this thesis, therefore a complete description of it’s contents is warranted.

The fields of the default conn.log are presented in Table 2.1. Further explanation of

the conn_state and history fields are presented in Tables 2.2 and 2.3, respectively.

2.3 Intrusion Detection Methodologies

The NIST classifies common detection methodologies as signature-based detec-

tion, anomaly-based detection, and stateful protocol analysis [40]. Synonymous to

signature-based, misuse-detection is common terminology in intrusion detection liter-

ature and will be the terminology used in this thesis. All methods can be “stateful”,
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Table 2.3. Bro history Meanings [2]

Letter | Meaning
S a SYN w/o the ACK bit set

a SYN+ACK (“handshake”)
a pure ACK
packet with payload (“data”)
packet with FIN bit set
packet with RST bit set
packet with a bad checksum
inconsistent flags in packet

et KN W (O WY [ sV [ ey

therefore protocol analysis is considered independently. A stateful IDS uses memory
to store the state of the environment being observed, allowing state to aid the detec-
tion criteria rather than acting on each individual observance alone. For example, a
stateful NIDS is capable of detecting threats across multiple packets rather than just
one individual packet. This is implemented to assist detection of fragmented attacks,
a common IDS evasion technique used by attackers. Hybrid detection methods that
combine the use of misuse and anomaly detection are covered in [16]. These four

methods are discussed in detail in the following sections.

2.3.1 Misuse Detection.

Misuse detection relies on signatures that correspond to a known vulnerability
or threat. A NIDS employing misuse detection will compare network traffic, each
individual packet, to a database of signatures producing an alert when there is a
match. Systems that use misuse detection are effective at detecting known threats
when a corresponding signature is available. Misuse detection is not well suited to
detect unknown threats, such as a zero-day attack, or even a variation of known
threats. High detection rates with low false positive rates are achievable with a set of
well-designed signatures. Snort [5] is the leading open-source misuse detection IDS

and is covered in more detail in Section 2.2.1.
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2.3.2 Anomaly-Based Detection.

Anomaly-based detection compares observed events to activities considered nor-
mal in order to identify significant deviations from normal [40]. A baseline of “normal”
must be captured to use as a comparison for the anomaly-based detection system.
Challenges in creating a suitable baseline include ensuring that no malicious activity
is present and the time period selected to baseline (days, weeks, or months). Activities
deviating from the baseline are considered anomalous, but are not always considered
a threat.

The primary advantage of an anomaly-based system is the ability to detect un-
known threats. One disadvantage is a high rate of false positives, due to the engineer-
ing decisions made selecting thresholds for alerts. Another disadvantage is the lack
of information provided to an analyst from an alert from an anomaly-based system.
In a misuse detection system, analysts can see the signature that caused the alert
and compare it to the suspect packet(s). The signature of an anomaly-based system
typically relies on statistical methods comparing multiple features that will not be
as easy for an analyst to decipher. Anomaly-based alerts typically require more time

and expertise to investigate [?].

2.3.3 Stateful Protocol Analysis.

Stateful protocol analysis, sometimes referred to as “deep packet inspection”,
compares profiles of acceptable protocol activity for each protocol to observed events
to identify deviations [40]. This differs from anomaly-based detection as the focus
is on specific protocols rather than network features. Bro [34] is a network security

framework that uses protocol analyzers and was covered in detail in Section 2.2.2.
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2.3.4 Hybrid Detection.

Hybrid detection methods involve the use of misuse-based and anomaly-based
detection with the intent of capitalizing on the benefits of the combined approach.
Engineering a solution that maintains the lower false positive rate of misuse detection
with the ability to detect unknown threats of anomaly detection could drastically
improve the security posture of our networks. Four methods of combining misuse and
anomaly detection are misuse-anomaly, anomaly-misuse, parallel, and complex [16,
48, 49]. These hybrid methods are presented in the following sections.

The following sections contains a common use of terms and set notation as pre-
sented in [16]. Cyber audit data is represented by set X. A, and A, are un-
known and normal output from the anomaly detection system, with the properties:
A UA, =X, A, NA, =0. M; and M, are the intrusive and unknown output from
the misuse detection system, with the properties: M; UM, = X,M; N M, = (. A
detailed description that further breaks each subset into a confusion matrix of true
and false positives, and true and false negatives based on known ground truth data

can be found in [16, 44].

2.3.4.1 Anomaly-Misuse.

A detection system using the anomaly-misuse serial combination will classify with
the anomaly detector first and forward unknown output to the misuse detector. The
anomaly-misuse system provides three subsets of X: A,, A, N M;, and A, N M,, as
shown in Figure 2.4, that represent normal, intrusive, and unqualified classes respec-
tively [44]. Intuitively, the intrusive class, A, N M;, contains items that both detectors
alerted on and a higher true positive rate is expected for this subset over either de-
tector used independently. Intuitively, the unqualified class, A, N M, contains items

the anomaly and misuse detectors classified as unknown, possibly requiring further
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investigation from an analyst. Because A, is not sent to the misuse detector, this

system should have an anomaly detector with a high accuracy rate of the normal

class.
X Anomaly 4, Misuse A4,NM,
detection detection
A, A, N M,

Figure 2.4. Anomaly-Misuse Detection System Workflow [16, 44]

Tombini et al. [44] applied an anomaly-misuse detection system to HTTP traffic
resulting in a reduction of 94.25% in log entries (alerts) in the unqualified class when
filtering through the anomaly detector compared to using the misuse detector alone.
This represents a drastic reduction in unqualified alerts that require investigation
from an analyst. Qualitative results are presented showing a combined reduction of
94.52% in unqualified and intrusive classes explaining that a majority of the filtered
intrusive class were likely to be false positives from the misuse detector based on
the severity levels of the alerts. Ground truth data was unavailable to confirm the

qualitative results.

2.3.4.2 Misuse-Anomaly.

A detection system using the misuse-anomaly serial combination will classify with
the misuse detector first and forward unknown output to the anomaly detector. The
misuse-anomaly system provides three subsets of X: M;, M, N A, and M, N A,, as
shown in Figure 2.5, that represent intrusive, uknown-normal, and unqualified classes
respectively. Intuitively, the unknown-normal class, M, N A,,, contains items that the
misuse detector classified as unknown and the anomaly detector classified as normal.

While still requiring investigation from an analyst, the items in the unknown-normal
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class would be a lower priority than the unqualified class, M, N A,, discussed in the

previous section.

X Misuse M, Anomaly |M, N4,
— 7 . > ) —>
detection detection
M, M,NnA,

Figure 2.5. Misuse-Anomaly Detection System Workflow [16, 49]

Zhang et al. [48, 49] applied a random-forests-based misuse-anomaly detection
system to the KDD’99 dataset resulting in a detection rate of 94.7% with a false
positive rate of 2% compared to the misuse detection used independently achieving a
detection rate of 94.2% with a false positive rate of 1.1%. The anomaly detection used
independently achieved a detection rate of 65% with a false positive rate of 1%. This
research concluded that the misuse-anomaly detection system did detect intrusions

missed by the misuse approach with minor increase in false positives.

2.3.4.3 Parallel.

A detection system using a parallel configuration will classify all cyber audit data
with an anomaly detector and a misuse detector independently. Initially, the outputs
Ay, A,, M;, and M, are created as each detector classifies audit data. A correlation
function, called resolver(), produces subsets A,,N\M;, A,NM,, A,NM;, and A,NM, as
shown in Figure 2.6. Intuitively, sets A,, N M, and A, N M, represent instances where
both detectors support the other and higher detection rates for normal and intrusive
items should be expected. On the other hand, sets A, N M; and A, N M, represent
instances where the two detectors disagree, requiring an analyst to investigate. An
advantage to the parallel configuration is that all subsets of results can be further

analyzed compared to how anomaly-misuse does not classify instances in A, with
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Figure 2.6. Parallel Detection System Workflow [16]

the misuse detector and how misuse-anomaly does not classify M; with the anomaly
detector. Any false negatives in these two subsets have no chance of being discovered
by the other detection method. On the other hand, showing all cyber audit data to

both detectors could be viewed as a processing disadvantage.

2.3.4.4 Complex.

Complex detection systems use a combination of misuse and anomaly detection
but do not exactly fit the structure of anomaly-misuse, misuse-anomaly, or paral-
lel [16]. Examples include the use of multiple machine learning classifiers as the
misuse and/or the anomaly detector, producing more combinations of sets and sub-
sets of intrusive, normal, and unknown instances beyond what was presented in the

previous sections.

2.4 Machine Learning and Intrusion Detection

Machine learning is a multidisciplinary field that utilizes knowledge from the fields
of artificial intelligence, statistics, computational complexity theory, control theory,
information theory, philosophy, psychology, neurobiology, and others [29]. Machine
learning focuses on learning algorithms that build models from data that can then

be used to make decisions or predictions. Thus, machine learning can be considered
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a data-driven method of knowledge discovery.

Machine learning algorithms are generally categorized as supervised or unsuper-
vised based on the method used to train the algorithm. In supervised learning, labeled
data in the form of instances are supplied to the algorithm to train with. The algo-
rithm builds a model based on the features that correspond to the labeled instances.
The labels are also known as classes. In unsupervised learning, the data supplied to
the algorithm for training is not labeled. Instead, the unsupervised learning algorithm
finds patterns or structure within the data to develop categories, or clusters, that can
then be used to make decisions or predictions. More than one type of algorithm can be
applied to a problem, for example, a clustering algorithm (unsupervised) can be used
to label an unlabled dataset that a classification algorithm (supervised) then uses to
train with. The experiments in this thesis use only supervised learning algorithms,
but many types of algorithms are discussed in the following sections.

Machine learning has been applied more generally in the classification of network
traffic and more specifically to classifying threats within network traffic. General
network traffic classification has many purposes ranging from network planning and
provisioning to maintaining Quality of Service (QoS) levels for customers. Network
threat detection classification specifically focuses on identifying malicious network

traffic. The following sections discuss relevant research in both of these areas.

2.4.1 General Network Traffic Classification.

Traditionally, network traffic was classified based on the set of assigned and ‘well-
known’ port numbers. Moore and Papagiannaki [31] demonstrate that recent trends
in port assignment and usage result in no better than 70% classification accuracy
using the traditional port-based classification methods. Initally, this led to the use

of statistical traffic properties and ultimately to the application of machine learning
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algorithms to classify network traffic.

In order to generalize network traffic using machine learning, the first step is to
extract features to represent the network traffic. Features can be extracted at the
packet-level, but are more commonly extracted at the connection-level. Connections,
sometimes referred to as flows, consist of one or more packets and represent a session
between two hosts for a connection-oriented protocol such as TCP. For connectionless
protocols, such as UDP, connections can contain packets to and from the same hosts
for a specified duration.

Moore et al. [30] present a comprehensive list of 249 discriminators (features) to
use in flow-based classification applications. All features are extracted from packet
header information from the packets within a connection. Therefore, each connection
represents an instance with 249 features. Statistical features include means, variances,
standard deviations, minimums, maximiums, and quartile measures for connection-
level data such as byte counts, packet inter-arrival times, TCP flag counts, and more.

Nguyen and Armitage [33] present a survey of 17 machine learning research papers
focused on the general classification of network traffic. Supervised, unsupervised, and
combined approaches are discussed which use various machine learning algorithms and
feature sets to conduct experiments on many different datasets. High accuracy (up
to 99%) is reported for many offline analysis and a focus for real-time analysis is now
trending. A full review of these methods is beyond the scope of this thesis. The intent
of this section is to document the related field of general network traffic classification

and provide resources to the reader.

2.4.2 Network Threat Detection Classification.

This section discusses the use of machine learning classifiers specific to the appli-

cation of network threat detection. First, common datasets problems are discussed.
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Then a discussion of semantics relating to anomaly detection and threat classification

is presented. Finally, a collection of related work is reviewed.

2.4.2.1 Datasets.

Machine learning research in classification of network threats is similar to general
network traffic classification and commonly uses similar connection-level features.
One difference is requirement for data that contains attacks along with normal traffic.
There is a lack of standard datasets or methods to create data to be used in network
threat detection research. The commonly used datasets are considered “no longer
adequate for any current study” [41], leaving many researchers to produce their own
data to conduct experiments that are not easily compared to research performed by
others.

A prominent dataset used in IDS research is a synthetic dataset created by MIT’s
Lincoln Laboratory with sponsorship by the Defense Advanced Research Project
Agency (DARPA) and the Air Force Research Laboratory (AFRL) [28]. Shortcom-
ings of the DARPA ’98 and ’99 datasets and the methods used to create the synthetic
network data have been presented by Mahoney and Chan [25] and McHugh [26].
The KDD’99 dataset was derived from the DARPA ’98 dataset for the International
Knowledge Discovery and Data Mining competition [17] by processing the raw tcp-
dump data into instances of connections represented by 41 features each. While
inheriting some of the same criticism as the DARPA datasets, the KDD’99 dataset
is the most widely used among IDS researchers. The recently released Kyoto2006+
dataset was created from three years of data (2006-2008) collected from a honeypot
at Kyoto University [42]. The Kyoto2006+ dataset attempts to solve the synthetic

and out-of-date problems associated with the KDD’99 dataset.

21



2.4.2.2 Anomaly Detection vs Threat Classification.

It is important to discuss the difference between anomaly detection and other
machine learning classification approaches to intrusion detection as the terms are often
used interchangeably when, perhaps, they should not be. Symons and Beaver [43]
factor the intermixing of terms to the common use of clustering, an unsupervised
machine learning approach, to the anomaly detection problem. Normal instances are
clustered, then outliers are identified as anomalous.

Sommer and Paxson [41] relate outlier detection of this manner to a “closed world”
approach where outliers are assumed to belong to the negative class and consider this
as a primary challenge for the application of machine learning to intrusion detection.
The authors continue to explain that domains in which machine learning has been
applied successfully rely on true classification problems, using samples of positive and
negative classes to train a learner. Finally, the authors suggest that machine learning
would be better suited for finding variations of known attacks rather than discovering
unknown attacks.

Symons and Beaver [43] argue the semantics of variations of known attacks versus
unknown attacks or previously unseen attacks presented by Sommer and Paxson [41],
taking the view that normal traffic can be completely different from anything pre-
viously seen and that previously unseen attacks may not appear anomalous in the
original feature space, but may in fact have distinguishing features that are more
similar to known attacks than normal traffic. Their argument is concluded by sug-
gesting the problem is finding the right view, the appropriate expert-derived feature
set, through which these distinctions can be made.

This thesis adopts the assumptions of Symons and Beaver [43] on the topic of
classifying unknown threats. The supervised algorithms used in the experiments

presented in Chapter III are trained with a set of features which the classifier uses to
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develop a feature space used to make classification decisions. The developed feature
space may resemble that of the original feature space, such as in a decision tree, or
it may not resemble the original feature space at all, such as in a neural network.
The similarity between a known threat, one which the system has seen, versus an
unknown threat, one which the system has not seen, is not simply a variation of the
known threat in the original feature set observed by a human analyst, but a similarity
in a feature space of the classifier, which was derived from the original feature set
by the machine learning algorithm. This similarity in feature space may or may not
represent a variation of a known attack or a completely novel attack in terms of the
original feature space which a human analyst works with.

There is no common definition of unknown threats with respect to machine learn-
ing classifiers and intrusion detection. There is no common method to evaluate a
classifier’s ability to detect unknown threats. This property is arguably the most
important measure to consider for a classifier used as an IDS and because of this,
an experiment and evaluation method is presented in Chapter III in an attempt to

address this issue.

2.4.2.3 Related Work.

Beaver et al. [12] developed a system with the objectives of complementing a
signature-based IDS, detecting attacks previously unseen by the system, while demon-
strating a high detection and low false positive rate. A boosted decision tree algo-
rithm, using Adaptive Boosting (AdaBoost), was tested alongside a signature-based
sensor on a self-created dataset comprised of 40 features similar to those from the
DARPA 1999 KDD dataset. A penetration test team conducted various attacks, some
of which the system was not trained for. The machine learning system detected 82%

of the attacks missed by the signature-based system and 89% of the attacks which it
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had not been trained. The overall detection rate of the machine learning sensor was
94% with a false positive rate of 1.8%. While the authors demonstrate the usefulness
of a hybrid architecture, the complete methodology used to create unknown attacks
is not disclosed, leaving the audience to question whether the method of selecting
unknown attacks for the experiments was comprehensive enough to validate the re-
sults. Unknown attacks with similar features, in the classifier’s feature space, to the
attacks which the system was trained could have been used which would lead to high
detection rates. The comprehensive unknown threat detection method, such as the
one presented in this thesis, would better support such results.

Symons and Beaver [43] address the challenge of training an IDS in-situ, in the
environment of intended use, by comparing two semi-supervised machine algorithms,
Laplacian Eigenmap (LEM) and Laplacian Regularized Least Squares (RLS), to a
signature-based system, a linear Support Vector Machine (SVM) classifier, and a
maximum entropy classifier. The Kyoto2006+ dataset, which has instances of known
and unknown attacks, was used in this research. The authors demonstrate the advan-
tage of the Laplacian RLS algorithm, compared to the other algorithms, when using
small training sets. The Lapalacian RLS is also shown to perform well when detecting
unknown attacks, detecting 397 of the 398 unknown attacks with a false positive rate
of 0.01619. The unknown attack detection capabilities of the other machine learn-
ing algorithms are not presented in this research. While comparisons are made to a
signature-based system, the combined results and value of a hybrid configuration are
not discussed in the research.

A summary of the reviewed literature for machine learning methods used in net-
work threat detection is presented in Table 2.4. The algorithm and dataset used is
included along with whether a hybrid architecture and unknown threats were consid-

ered.
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Table 2.4. Summary of Related Work

Author(s) Algorithm(s) Dataset | Hybrid | Unk Threats
Zhang et al. [49] Random Forests KDD 99 v
Beaver et al. [12] AdaBoost Decision Tree | Self-Created v v
Symons and Beaver [43] | Laplacian Eignenmap | Kyoto2006+ v
Laplacian RLS
Linear SVM
Maximum Entropy

2.5 Classifiers

Many machine learning classifier algorithms have been applied to the intrusion
detection problem. In the limited scope of this thesis, five algorithms along with
two boosted variations will be compared. The Waikato Environment for Knowledge
Analysis (WEKA) machine learning suite from the University of Waikato [21] is used
to conduct the experiments for this thesis. All of the algorithms used in this research
are supervised machine learning algorithms which utilize labeled training data to
construct models used to make classification decisions. The following sections will
provide the necessary background and relevant WEKA-specific implementations for

each of the algorithms used in this research.

2.5.1 Bayesian Network.

Bayesian classifiers are probabilistic and produce probability estimates rather than
hard classifications when making classification decisions [46]. Naive Bayes, a com-
monly used Bayesian classifier, uses a joint probabilistic model which assumes inde-
pendence among features. While Naive Bayes is often successful, assuming indepen-
dence among features is not always possible, which is when a more general Bayesian
Network is preferred. Bayesian Networks are a network of nodes, one node for each
feature, connected by directed edges such that there are no cycles, a directed acyclic

graph. The connections between nodes represent conditional probabilistic properties
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between features. Within each node is a table which defines a probability distribution

that is used to produce probability estimates when classifying new instances.

2.5.2 Instance-Based Learner (IBE).

Instance-based learners generate predictions by comparing instances to be classi-
fied to the set of saved instances rather than using a set of abstractions of specific-
instances as a model [9]. The classification decision matches the classification of the
closest matching instance in the test set. Instance-based learners are considered lazy
algorithms since a model is not built causing the computational expense to occur
during classification. IBk is an intance-based learner in WEKA that uses a k-nearest
neighbor classifier to determine the closest matching instance with a Euclidean dis-

tance function [46].

2.5.3 Sequential Minimal Optimization (SMO).

Sequential Minimal Optimization (SMO) is a training algorithm applied to a Sup-
port Vector Machine (SVM) [35]. An SVM algorithm is used for two-class classifica-
tion problems [13]. Input vectors are non-linearly mapped to a highly dimensional
feature space and a linear decision surface is created, separating the two classes.
The dimensionality of the feature space is defined by the kernel function selected
for use in the SVM algorithm. Linear or polynomial kernel functions can be used.
In a two-dimension space, a line would be created to represent the decision barrier
while the algorithm seeks to maximize distance from the line for the instances of
each class. The instances closest to the decision barrier are called support vectors. In
multi-dimension space, the decision barrier is represented by a hyperplane. SVMs can
also be used for multi-classification problems by splitting the problem into multiple

two-class classification problems and applying an SVM to each subproblem.
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The mathematical problem of calculating the optimal hyperplane to use in an SVM
is a very large quadratic programming optimization problem [35]. SMO breaks this
quadratic problem into a series of the smallest possible quadratic problems, keeping
the training process between the linear to quadratic range with regards to the training
set size, where the standard SVM algorithm training process falls between the linear
to cubic range with regards to the training set size. WEKA utilizes the SMO training

process for its SVM implementation.

2.5.4 Decision Trees.

C4.5 is a popular open-source decision tree algorithm developed and improved
by Quinlan [37, 36]. A tree structure is produced such that each node represents
a decision that corresponds to a specific feature and each leaf node represents a
classification decision. Each instance to be classified begins at the root node and
traverses down the tree until reaching a leaf node where the classification decision is
made. A pruning process is used to reduce the overall size of the decision tree and
to reduce the chance of overfitting, a problem that occurs when too many branches
are created to represent the training set that ends up not generalizing well with test
data.

WEKA’s implementation of the C4.5 algorithm is called J48, which implements a
later, slightly improved, version of C4.5 before the release of the proprietary version
C5.0 [46]. J48 is implemented in Java rather than C, explaining the use of J rather

than C in the algorithm’s name.

2.5.5 Artificial Neural Networks (ANNSs).

Artificial Neural Networks (ANNs) are inspired by biological learning systems

comprised of complex networks of interconnected neurons [29]. A set of inputs, the
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values of features for each instance, are connected to hidden layers of nodes, which
are connected to specific outputs, representing the classes in a classification problem.
Each connection is a weighted function that is updated with a training process which
maps the input features to the labelled output. The network is trained on multiple
iterations of the training data, updating the weight on each iteration until a suitable
model is constructed.

WEKA’s Multilayer Perceptron (MLP) is an ANN which uses backpropagation
for training and allows the user to select the number of hidden layers, training cycles,

and other parameters [46].

2.5.6 Boosting Algorithms.

Boosting algorithms are applied to reduce errors of a weak learning algorithm,
whose performance is a little better than random guessing [19]. This is accomplished
by running the weak learner multiple times over the training data and combining the
resulting models from the weak classifier into a combined composite classifier.

WEKA implements the AdaBoost.M1 algorithm which assigns weights to each
training instance during each iteration of the boosting algorithm [46]. Instances re-
ceive an equal weight for the first iteration, then the weights decrease or increase for
correctly and incorrectly classified instances, respectively. This leaves “easy” to clas-
sify instances with a low weight and “hard” to classify instances with a high weight.
Subsequent iterations of the AdaBoost.M1 algorithm focus on correctly classifying

the hard to classify instances, ultimately producing a model with reduced error.

2.6 Summary

In summary, this chapter provided a background of IDS technologies, reviewing

the architecture and processes of Snort and Bro. IDS methodologies were discussed in
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detail, including the various hybrid IDS configurations. A review of machine learning
research applied to general network traffic classification and network threat detection
classificiation was presented. Finally, the necessary background on the classifiers used

in the experiments of this thesis was provided.
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III. Methodology

3.1 Chapter Overview

This chapter explains the methodology used in this thesis. The first section de-
scribes a proposed system architecture which encompasses the methodology used.
Next, a description of the dataset used in the experiments is provided. The chapter
then discusses the network sensor configuration. The data preprocessing steps are
then presented, followed by the classifier configuration. The chapter then explains
the machine learning experiments conducted and the performance metrics used for
evaluation. Finally, the chapter concludes with the development of a Value-Focused

Thinking (VFT) hierarchy to be used for classifier evaluation.

3.2 Proposed System

This research proposes a multi-modality hybrid IDS which uses a packet-level
signature-based IDS and a connection-level machine learning threat classifier system.
The proposed architecture is provided in Figure 3.1. Network sensor data is classified
at the packet-level by the signature-based IDS and also sent to extract connection-
level features. In the online process, the connection-level features would be classified
by the trained threat classifier(s), then passed to the resolver. The resolver would cor-
relate packet-level alerts to connections, then produce the desired subsets previously
discussed in Section 2.3.4 for the analyst to review.

Dua and Du [16] mention the lack of details of the resolver presented by Anderson
et al. [10]. A possible implementation in this proposed architecture is to first correlate
the packet-based alerts from the signature-based IDS to the connections identified by
the connection-level feature extraction, then create a normal and alert set for each

classifier, including Snort. Any desired subset combination, for multiple classifiers,
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Figure 3.1. Proposed System Architecture

can then be produced from the resolver using simple set operations.

The offline portion illustrates the correlation and labeling process used to create
training datasets for the threat classifiers. The shaded components are not addressed
in this research, but are provided here as a possible mitigation for the assumption of
training classifiers with data that is not labeled with ground truth. The idea being
that a human analyst will review and update the training data with ground truth
prior to training classifiers. The details specific to each component are covered in the

rest of this chapter.

3.3 Dataset Description

As discussed in Chapter II, datasets are among the challenges in IDS research.
The data used in this research comes from the Cyber Defense Exercise (CDX), an
annual cyberwarfare exercise sponsored by the US National Security Agency (NSA).
The network environment and situation in which this dataset originated can be found

in [32]. The CDX is an annual competition between military service schools including
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the US Military Academy at West Point, US Air Force Academy, Naval Postgraduate
School (NPS), US Naval Academy, US Coast Guard Academy, US Merchant Marine
Academy, and the Air Force Institute of Technology (AFIT). During the competition,
students, as the “blue team”, were tasked to defend similar suites of network equip-
ment and services against attacks. Attacks came from the “red team” which was
comprised of highly trained practitioners from the NSA, the Air Force Information
Warfare Center, the Navy Information Operations Center, the Army’s 1st Information
Operations Command, the Marine Corps Network Operation Center, and the Army

“red team” was able to exploit the

Reserve Information Operations Command. The
“blue team” networks with any open source or publicly available means they desired,
leading to a high variation of attack methods from a reputable team of attackers.
The specific data used in this research is the network traffic collected from AFIT’s
network during the CDX, as represented in Figure 3.2. All inbound and outbound
network traffic was collected in libpcap format using TCPDump. Data was available
for years 2003 through 2007, and 2009. Table 3.1 shows the yearly breakout including
the total size (in MB) and number of packets collected per year. Having data that

spans six years provides the ability to analyze changes in attack methods over time,

making it less restrictive than a dataset of a lesser time span.

Table 3.1. CDX Data Set Description by Year
2003 2004 2005 2006 2007 2009 Total
Size (MB) 1,639 712 704 411 931 502 4,899
Packets | 5,861,337 | 2,888,609 | 1,609,533 | 1,130,422 | 10,452,163 | 1,